A Study of Atmospheric Aerosols in The Bahamas Using Camera Lidar and Star Photometry Techniques
DOI:
https://doi.org/10.15362/ijbs.v29i1.519Keywords:
Aerosols, Camera lidar, Wide angle lens, Extinction, Optical depth, Star photometryAbstract
Aerosols, the tiny suspended particles in the atmosphere, are a widely studied topic around the world due to their effects on the Earth’s radiation budget, climate change, and human health. Knowledge of the spatial and temporal distribution of aerosols is essential to assess air pollution and predict potential climate change. This study measured aerosol optical depth (AOD) and altitude-dependent aerosol extinctions in Nassau, The Bahamas simultaneously using a camera-based imaging lidar (CLidar). The bistatic geometry of the setup which consisted of a wide-angle lens fitted to a charge-coupled device (CCD) camera, allowed for the measurement of extinctions at all altitudes at once without requiring expensive timing electronics common to lidars. A case study was conducted on November 5, 2018. The top of the boundary layer beyond which aerosol extinction was nearly zero was detected at ~ three km above sea level. Due to the excellent resolution of the CLidar at lower altitudes, variations of aerosol concentrations within the boundary layer are efficiently detected. Optical depth was measured using the same CLidar camera at the same time, utilising star photometry, and was found to be 0.043 ± 0.040. The value falls within the range of assumed values of AOD near the regions obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua satellite.
References
Alekseeva, G., Arkharov, A., Galkin, V., Hagen-Thorn, E., Nikanorova, I., Novikov, V., Novopashenny, V., Pakhomov, V., Ruban, E., & Shchegol, D. (1996). The Pulkovo spectrophotometry catalog of bright stars in the range from 320 to 1080 nm. Open Astronomy, 5(4), 603-838. https://doi.org/10.1515/astro-1996-0401
Barnes, J. E., & Hofmann, D. J. (2001). Variability in the stratospheric background aerosol over Mauna Loa Observatory. Geophysical Research Letters, 28(15), 2895–2898. https://doi.org/10.1029/2001GL013127
Barnes, J. E., & Sharma, N. C. (2012). An inexpensive active optical remote sensing instrument for assessing aerosol distributions. Journal of the Air & Waste Management Association, 62(2), 198–203. https://doi.org/10.1080/10473289.2011.639927
Barnes, J. E., Pipes, R., & Sharma, N. C. (2016). Measuring aerosol optical depth (AOD) and aerosol profiles simultaneously with a camera lidar. EPJ Web of Conferences, 119, 02007. https://doi.org/10.1051/epjconf/201611902007
Barnes, J. E., Sharma, N. C. P., & Kaplan, T. B. (2007). Atmospheric aerosol profiling with a bistatic imaging lidar system. Applied Optics, 46(15), 2922–2929. https://doi.org/10.1364/AO.46.002922
Baumgardner, D., Brenguier, J. L., Bucholtz, A., Coe, H., DeMott, P., Garrett, T. J., Gayet, J. F., Hermann, M., Heymsfield, A., Korolev, A., Krämer, M., Petzold, A., Strapp, M., Pilewskie, P., Taylor, J., Twohy, C., Wendisch, M., Bachalo , W., & Chuang, P. (2011). Airborne instruments to measure atmospheric aerosol particles, clouds and radiation: A cook's tour of mature and emerging technology. Atmospheric Research, 102(1-2), 10–29. https://doi.org/10.1016/j.atmosres.2011.06.021
Charlson, R. J., Schwartz, S. E., Hales, J. M., Cess, R. D., Coakley, J. A., Jr., Hansen, J. E., & Hofmann, D. J. (1992). Climate forcing by anthropogenic aerosols. Science, 255(5043), 423–430. https://doi.org/10.1126/science.255.5043.423
Fiore, A. M., Naik, V., Spracklen, D. V., Steiner, A., Unger, N., Prather, M., Bergmann, D., Cameron-Smith, P. J., Cionni, I., Collins, W. J., Dalsøren, S., Eyring, V., Folberth, G. A., Ginoux, P., Horowitz, L. W., Josse, B., Lamarque, J. F., MacKenzie, I. A., Nagashima, T., … Zengu, G. (2012). Global air quality and climate. Chemical Society Reviews, 41(19), 6663–6683. https://pubs.rsc.org/en/content/articlelanding/2012/cs/c2cs35095e
Goddard Space Flight Center. (2023). AERONET: Aerosol Robotic Network. https://aeronet.gsfc.nasa.gov/
Kabir, A. S., Sharma, N. C., Barnes, J. E., Butt, J., & Bridgewater, M. (2018, May 10). Using a bistatic camera lidar to profile aerosols influenced by a local source of pollution. Laser Radar Technology and Applications XXIII, 10636, 126-132. https://doi.org/10.1117/12.2303544
Kabir, A. S., Sharma, N. C., Gagnon, S., Alcantara-Silva, M., Odhiambo, G., & Barnes, J. E. (2022, July 11-15). Detection of aerosols in The Bahamas during Saharan dust transport times with a laser and a CCD imager. Optics and Photonics for Sensing the Environment 2022, Vancouver, British Columbia. https://doi.org/10.1364/ES.2022.EM2D.5
Kabir, A. S., Sharma, N. C., Knowles, E., Bain, C., Gagnon, S., Fagnoni, J., & Barnes, J. E. (2020, June 22-26). Profiling boundary layer aerosols in The Bahamas at various time of year using a camera-based imaging Lidar. Optics and Photonics for Sensing the Environment 2020, Washington, DC. https://doi.org/10.1364/ES.2020.ETu4E.5
Kabir, A., Sharma, N., Barnes, J. E., Urbanczyk, A., Fagnoni, J., Gagnon, S., Alcantara-Silva, M., & Knowles, E. (2021, July 11-16). Dependence of aerosol extinction measurements using a camera based lidar on various aerosol phase functions. IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium. https://doi.org/10.1109/IGARSS47720.2021.9554695
Kaufman, Y. J., Tanré, D., & Boucher, O. (2002). A satellite view of aerosols in the climate system. Nature, 419(6903), 215–223. https://doi.org/10.1038/nature01091
Kinney, P. L. (2008). Climate change, air quality, and human health. American Journal of Preventative Medicine, 35(5), 459–467. https://doi.org/10.1016/j.amepre.2008.08.025
Leiterer, U., Naebert, A., Naebert, T., & Alekseeva, G. (1995). A new star photometer developed for spectral aerosol optical thickness measurements. Contributions to Atmospheric Physics, 68(2), 133–142. https://www.osti.gov/etdeweb/biblio/178652
Leung, L. R., & Gustafson, W. I., Jr. (2005). Potential regional climate change and implications to US air quality. Geophysical Research Letters, 32(16), L16711. https://doi.org/10.1029/2005GL022911
Levy, H., Horowitz, L. W., Schwarzkopf, M. D., Ming, Y., Golaz, J. C., Naik, V., & Ramaswamy, V. (2013). The roles of aerosol direct and indirect effects in past and future climate change. Journal of Geophysical Research: Atmospheres, 118(10), 4521–4532. https://doi.org/10.1002/jgrd.50192
Levy, R., & Hsu, C. (2015, February 6). MODIS Atmosphere L2 Aerosol Product. NASA MODIS Adaptive Processing System, Goddard Space Flight Center, USA. https://doi.org/10.5067/MODIS/MOD04_L2.006
Lian, S., Bian, Y., Zhao, G., Li, W., & Zhao, C. (2019). Dual CCD detection method to retrieve aerosol extinction coefficient profile. Optics Express, 27(20), A1529–A1543. https://doi.org/10.1364/oe.27.0a1529
Liu, Y., Jia, R., Dai, T., Xie, Y., & Shi, G. (2014). A review of aerosol optical properties and radiative effects. Journal of Meteorological Research, 28(6), 1003–1028. https://doi.org/10.1007/s13351-014-4045-z
Mao, K. B., Ma, Y., Xia, L., Chen, W. Y., Shen, X. Y., He, T. J., & Xu, T. R. (2014). Global aerosol change in the last decade: An analysis based on MODIS data. Atmospheric Environment, 94, 680–686. https://doi.org/10.1016/j.atmosenv.2014.04.053
Myhre, G., Myhre, C. E. L., Samset, B. H., & Storelvmo, T. (2013). Aerosols and their relation to global climate and climate sensitivity. Nature Education Knowledge, 4(5), 7. https://www.nature.com/scitable/knowledge/library/aerosols-and-their-relation-to-global-climate-102215345/
National Aeronautics and Space Administration. (2023). MODIS: Moderate Resolution Imaging Spectroradiometer. https://modis.gsfc.nasa.gov/about/
National Astronomical Observatory of Japan. (1994). Altitude/azimuth of stars https://eco.mtk.nao.ac.jp/cgi-bin/koyomi/cande/horizontal_rhip_en.cgi
NRLMSIS Atmosphere Model. (n.d.). https://kauai.ccmc.gsfc.nasa.gov/instantrun/nrlmsis/
University of Wyoming. College of Engineering. Department of Atmospheric Science. (n.d.). Soundings. http://weather.uwyo.edu/upperair/sounding.html
Welton, E. J., & Campbell, J. R. (2002). Micropulse lidar signals: Uncertainty analysis, Journal of Atmospheric and Oceanic Technology, 19(12), 2089–2094. https://doi.org/10.1175/1520-0426(2002)019%3C2089:MLSUA%3E2.0.CO;2