Observations of Extreme Waves and Wave Spectra during Hurricane Dorian (2019)
DOI:
https://doi.org/10.15362/ijbs.v29i1.497Keywords:
buoy observations, wind waves, extreme waves, hurricane-induced waves, Hurricane Dorian, The Bahamas, Atlantic Ocean, Ocean Waves, Natural disasters, Surface waves (Oceanography), Storm surges, FloodsAbstract
Due to the sparse distribution of buoys in the ocean, direct observations of extreme wave activity as excited by tropical cyclones (TCs) are few; but nonetheless, these buoys provide rare opportunities to learn more about how weather systems interact with the ocean wave field. In this study, National Oceanic and Atmospheric Administration National Data Buoy Center buoy observations of one-dimensional (1D) and two-dimensional (2D) wave spectra during the translation speed of Hurricane Dorian (2019) through the Atlantic Ocean were used to examine extreme wave events in the days before and after its September 1, 2019 landfall in The Bahamas. Observations of wave properties during storm intensification and decay showed that although significant wave height naturally rose and fell, the dominant wave period remained virtually constant. At the height of the storm, a lethal combination formed, with the highest significant wave heights being recorded at over 8 m (more than four times the mean) and dominant wave periods exceeded 12 s. Wave direction also varied widely as wave regimes shifted from wind-sea to swell, with spectral wave energy peaking at over 120 m2/Hz, six times higher than pre-Hurricane Dorian wave states. This study provides the first in situ characterization of extreme wave heights as induced by Hurricane Dorian. The study recommends that a number of observational platforms be funded, developed, and deployed throughout the Lucayan Archipelago.
References
Ardhuin, F., Stopa, J. E., Chapron, B., Collard, F., Husson, R., Jensen, R. E., Johannessen, J., Mouche, A., Passaro, M., Quartly, G. D., Swail, V., & Young, I. (2019). Observing sea states. Frontiers of Marine Science, 6, 124. https://doi.org/10.3389/fmars.2019.00124
Babanin, A.V., Rogers, W. E., de Camargo, R., Doble, M., Durrant, T., Filchuk, K., Ewans, K., Hemer, M. Janssen, T., Kelly-Gerreyn, B., Machutchon, K., McComb, P., Qiao, F., Schulz, E., Skvortsov, A., Thomson, J., Vichi, M., Violante-Carvalho, N., Wang, D. … Young, I. R. (2019). Waves and swells in high wind and extreme fetches, measurements in the Southern Ocean. Frontiers in Marine Science, 6, 361. https://doi.org/10.3389/fmars.2019.00361
Bell, R., & Kirtman, B. (2019). Extreme environmental forcing on the container ship SS El Faro. Journal of Operational Oceanography, 14(2), 98–113. https://doi.org/10.1080/1755876X.2019.1684136
Bouchard, R. H., Teng, C. C., & Hervey, R. V. (2006). Significant events reported by the NDBC stations during Hurricane Katrina. IEEE, OCEANS 2006. https://doi.org/10.1109/OCEANS.2006.306817
Campos, R.M., D’Agostini, A., Leite França, B. R., Machado Cruz, L., & Guedes Soares, C. (2020). Extreme wind and wave predictability from operational forecasts at the Drake Passage. Journal of Offshore Mechanics and Arctic Engineering, 143(2), 1–16. https://doi.org/10.1115/1.4048151
Chen, C., Sasa, K., Prpić-Oršić, J., & Mizojiri, T. (2021). Statistical analysis of waves’ effects on ship navigation using high-resolution numerical wave simulation and shipboard measurements. Ocean Engineering, 229(10), 108757. https://doi.org/10.1016/j.oceaneng.2021.108757
Collins, C.O., Potter, H., Lund, B., Tamura, H., & Graber, C. (2018). Directional wave spectra observed during intense tropical cyclones. Journal of Geophysical Research: Oceans, 123(2), 773–793. https://doi.org/10.1002/2017JC012943
De May-Frémaux, P., Ayoub, N., Barth, A., Brewin, R., Charria, G., Campuzano, F., Ciavatta, S., Cirano, M., Edwards, C. A., Federico, I., Gao, S., Garcia Hermosa, I., Garcia Sotillo, M., Hewitt, H., Hole, L. R., Holt, J., King, R., Kourafalou, V., Youyu, L. … Xueming, Z. (2019). Model-observations synergy in the coastal ocean. Frontiers in Marine Science, 6, 436. https://doi.org/10.3389/fmars.2019.00436
Derkani, M. H., Alberello, A., Nelli, F., Bennetts, L. G., Hessner, K. G., MacHutchon, K., Reichert, K., Aouf, L., Khan, S., & Toffoli, A. (2021) Wind, waves, and surface currents in the Southern Ocean: observations from the Antarctic Circumnavigation Expedition. Earth System Science Data, 13(3), 1189–1209. https://doi.org/10.5194/essd-13-1189-2021
Fedele, F., Lugni, C. & Chawla, A. (2017). The sinking of the El Faro: Predicting real world rogue waves during Hurricane Joaquin. Scientific Reports, 7, 11188. https://doi.org/10.1038/s41598-017-11505-5
Garcia, E., Quiles, E. , Correcher, A., & Morant, F. (2018). Sensor buoy system for monitoring renewable marine energy resources. Sensors, 18(4), 945. https://doi.org/10.3390/s18040945
Gramcianinov, C. B., Campos, R. M., de Camargo, R., & Guedes Soares, C. (2021). Relation between cyclone evolution and fetch associated with extreme wave events in the South Atlantic Ocean. Journal of Offshore Mechanics and Arctic Engineering, 143(6), 1–27. https://doi.org/10.1115/1.4051038
Greig, E., Green, B. A., Ford, H. R., Bertrand Farmer, D., Nottage, K. M., Espinel, Z., & Shultz, K. M. (2020). Extreme population exposure: Hurricane Dorian medical response in Great Abaco, Bahamas. EClinicalMedicine, 20, 1002274. https://doi.org/10.1016/j.eclinm.2020.100274
Guillou, N., Lavidas, G., & Chapalain, G. (2020). Wave energy resource assessment for exploitation: A review. Journal of Marine Science and Engineering, 8, 705. https://doi.org/10.3390/jmse8090705
Hanson, J. L., & Jensen, R. E. (2004, November). Wave system diagnostics for numerical wave models. 8th International Workshop on Wave Hindcasting and Forecasting, Oahu, Hawaii. http://www.waveworkshop.org/8thWaves/Papers/E3.pdf
Hanson, J. L., Tracy, B. A., Tolman, H. L., & Scott, R. D. (2009). Pacific hindcast performance of three numerical wave models. Journal of Atmospheric and Oceanic Technology, 26(8), 1614-1633. https://doi.org/10.1175/2009jtecho650.1
Hwang, P., & Walsh, E. J. (2018). Propagation directions of ocean surface waves inside tropical cyclones. Journal of Physical Oceanography, 48(7), 1495–1511. https://doi.org/10.1175/JPO-D-18-0015.1
Liu, G., Cui, K., Jiang, S., Kou, Y., You, Z., & Yu., P. (2021). A new empirical distribution for the design of wave heights under the impact of typhoons. Applied Ocean Research, 111, 102679. https://doi.org/10.1016/j.apor.2021.102679
Longuet-Higgins, M. S., Cartwright, D. E., & Smith, N. D. (1963). Observations of the directional spectrum of sea waves using the motions of a floating buoy. In L. Scriven (Ed.), Ocean Wave Spectra (pp. 111–136), Prentice-Hall.
Markina, M. Y., Studholme, J. H. P., & Gulev, S. K. (2019). Ocean wind wave climate responses to wintertime North Atlantic atmospheric transient eddies and low-frequency flow. Journal of Climate, 32(17), 5619–5638. https://doi.org/10.1175/JCLI-D-18-0595.1
Meucci, A., Young, I. R., Hemer, M., Kirezci, E., & Ranasinghe, R. (2020). Projected 21st century changes in extreme wind-wave events. Science Advances, 6(24), eaaz7295. https://doi.org/10.1126/sciadv.aaz7295
Montoya, R. D., Menendez, M., & Osorio, A. F. (2018). Exploring changes in Caribbean hurricane-induced wave heights. Ocean Engineering, 163, 126–135. https://doi.org/10.1016/j.oceaneng.2018.05.032
Nair, M. A., Kumar, V. S., & George, V. (2021). Evolution of wave spectra during sea breeze and tropical cyclone. Ocean Engineering, 219, 108341. https://doi.org/10.1016/j.oceaneng.2020.108341
Ortiz-Royero, J. C., Otero, L. J., Restrepo, J. C., Ruiz, J., & Cadena, M. (2013). Cold fronts in the Colombian Caribbean Sea and their 0relationships to extreme wave events. Natural Hazards Earth System Sciences, 13, 2797–2804. www.nat-hazards-earth-syst-sci.net/13/2797/2013/
Otero, L. J., Ortiz-Royero, J. C., Ruiz-Merchan, J.K., Higgins, A. E., & Henriquez, S. A. (2016). Storms or cold fronts: What is really responsible for the extreme wave regime in the Colombian Caribbean coastal region? Natural Hazards Earth System Sciences, 16, 391–401. https://doi.org/10.5194/nhess-16-391-2016
Ponce de León, S., & Bettencourt, J. H. (2019). Composite analysis of North Atlantic extra-tropical cyclone waves from satellite altimetry observations. Advances in Space Research. https://doi.org/10.1016/j.asr.2019.07.021
Pramudya, F. S., Pan, J., Devlin, A. T., & Lin, H. (2021). Enhanced estimation of significant wave height with dual-polarization sentinel-1 SAR imagery. Remote Sensing, 13, 124. https://doi.org/10.3390/rs13010124
Ranji, Z., Soltanpour, M., & Shibayama, T. (2020). Spectral analysis of storm-induced waves by Cyclone Ashobaa in Arabian Sea and Gulf of Oman. Coastal Engineering, 36(6). https://doi.org/10.9753/icce.v36v.papers.6
Ribal, A., & Young, I. R. (2020). Global calibration and error estimation of altimeter, scatterometer and radiometer wind speed using triple collocation. Remote Sensing, 12(12), 1997. https://doi.org/10.3390/rs12121997
Sahoo, B., Jose, F., & Bhaskaran, P. K. (2019). Hydrodynamic response of Bahamas archipelago to storm surge and hurricane generated waves – A case study for Hurricane Joaquin. Ocean Engineering, 184, 227–238. https://doi.org/10.1016/j.oceaneng.2019.05.026
Scandurra, G., Romano, A., Ronghi, M., & Carfora, A. (2018). On the vulnerability of Small Island Developing States: a dynamic analysis. Ecological Indicators, 84, 382–392. https://doi.org/10.1016/j.ecolind.2017.09.016
Shimura, T., Mori, N., & Hemer, M. A. (2016). Projection of tropical-cyclone generated extreme wave climate based on CMIP5 multi-model ensemble in the Western North Pacific. Climate Dynamics, 49, 1449–1462. https://doi.org/10.1007/s00382-016-3390-2
Støle-Hentschel, S., Trulsen, K., Nieto Borge, J.C., & Olluri, S. (2020). Extreme wave statistics in combined and partitioned windsea and swell. Water Waves, 2, 169–184. https://doi.org/10.1007/s42286-020-00026-w
Takbash, A., & Young, I. R. (2019). Global ocean extreme wave heights from spatial ensemble data. Journal of Climate, 32(20), 6823–6836. https://doi.org/10.1175/JCLI-D-19-0255.1
Tamizi, A., & Young, I. R. (2020). The spatial distribution of ocean waves in tropical cyclones. Journal of Physical Oceanography, 50(8), 2123–2139. https://doi.org/10.1175/JPO-D-20-0020.1
Thomas, A., Baptiste, A., Martyr-Koller, R. Pringle, P., & Rhiney, K. (2020). Climate change and Small Island Developing States. Annual Review of Environment and Resources, 45(1), 1–27. https://doi.org/10.1146/annurev-environ-012320-083355
Tian, D., Zhang, H., Zhang, W., Zhou, F., Sun, X., Zhou, Y., & Ke, D. (2020). Wave glider observations of surface waves during three tropical cyclones in the South China Sea. Water, 12(5), 1331. https://doi.org/10.3390/w12051331
Timmermans, B., Patricola, C., & Wehner, M. (2018). Simulation and analysis of hurricane-driven extreme wave climate under two ocean warming scenarios. Oceanography, 31(2), 88–99. https://doi.org/10.5670/oceanog.2018.218
Wang, J., Aouf, L., Wang, X., Li, B., & Wang, J. (2020). Remote cross-calibration of wave buoys based on significant wave height observations of altimeters in the Northern Hemisphere. Remote Sensing, 12, 3447. https://doi.org/10.3390/rs12203447
Yang, S., & Oh, J. (2018). Long-term changes in the extreme significant wave heights on the Western North Pacific: Impacts of tropical cyclone activity and ENSO. Journal of Atmospheric Science, 54(1), 103–103. https://doi.org/10.1007/s13143-017-0063-y
Zegarra, M. A., Schmid, J. P., Palomino, L. & Seminario, B. (2020). Impact of Hurricane Dorian in The Bahamas: A view from the sky. InterAmerican Development Bank. https://doi.org/10.18235/0002163
Zhang, B., Li, X., Perrie, W., & He, Y. (2015). Synergistic measurements of ocean winds and waves from SAR. Journal of Geophysical Research: Oceans, 120, 6164–6184. https://doi.org/10.1002/2015JC011052